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Abstract—The effects of large amplitudes and initial deformations on shock waves and acceleration waves
propagating in fiber-reinforced laminated plates are investigated. Three cases are discussed, namely the large
amplitude shock under initial in-plane deformations, small amplitude waves under in-plane deformations, and
small amplitude waves propagating in a plate with large deflection. It is found that the in-plane force has a
substantial effect on the transverse shear mode but little effects on other modes. The large initial deflection,
however, is found to have considerable effects on all modes. A general procedure for constructing the wave
surfaces is also presented.

I. INTRODUCTION

In a previous paper[1], the present authors developed a set of general equations on the shock
wave and the acceleration wave propagating with large amplitude in initially undisturbed and
disturbed laminated plates. Discussions were given only on the case without initial deformations.
In[1], it was found that the acceleration wave could be affected only by the initial deformation
immediately ahead of the wave front. It was also revealed that large amplitudes had little
influence on the propagation of all wave fronts of all modes except the transverse shear mode if
the plate was initially undisturbed. It is thus of interest to investigate the effect of initial deflection
of the laminated plate on the propagation of wave fronts.

In this paper, we employ the basic governing equations derived in{1] to study several specific
initial deformations. A general method for constructing the wave surfaces is also presented.

2. GOVERNING EQUATIONS
The notations will follow those used by[1].

It was derived in [1] that the plate kinematical variables u; of the shock wave in a laminate
initially at rest or in motion must satisfy the relation

{a;Huy} = {0} (1)

where {a;} and {u} are given in[1]. The corresponding relation for the acceleration wave was
obtained as

{b; Hii;} = {0} 2
The conditions that the velocities of the shock wave and the acceleration wave must satisfy are
|ag| =0 3)
and
byl =0 C)

respectively. Specifically, the general expression for |ay| =0 is given by
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The definitions of other quantities are given by|1]. In the above equations. a subscript "« ™ again
designates the value immediately ahead of the wave front. It is important to note that the
influence of the initial deformation on the wave front is through the nontrivial terms {E.} and
{N.} existing immediately ahead of the wave front,

The expression for {h;} can be obtained from eqn (5) by setting {s'] - 0

3. LARGE AMPLITUDE SHOCK UNDER INITIAL IN-PLANE DEFORMATION

Suppose that the laminated plate is in a state of in-plane deformation so that the transverse
displacement vanishes everywhere. Consequently.

{E.} = {0} 1k - {0}, v =0 t1d)
and

yo={n} {TH{N.} (1%
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A careful examination of eqn (15) reveals that v, is in fact the normal component of the initial
in-plane force, i.e.

Yo = (N.,),, = "xz(Nx )u + n.vz(NV)a + znxn_v (ny)u (16)
Substituting eqns (14) and (16) in eqn (9) we obtain
8. = (N.)u + y[WT/2¢, a7

Substitution of eqns (14) and (17) in eqn (5) yields, for R =0,

A’fl_fnzp Atz T Bt ki w]
A% ATz—CnZP B%, B%, ka[w]
B%*, B%. D?n—cnzI D#%. ki[w] =0
B#%, B%, D%, D’;z_cnzl kaw]
ki[w] ko[ w] ks[w] kdwl  2¢.(ks" — c.’P) + y[wT (18)

where

k5" = ks + (Nv)ﬂ
=n2(Nx + Ass)a + 13Ny + Asgda + 201, (Ney + Aus)a (19)

It is easy to see that, except for the term ks, the expression |a;| =0 given by eqn (18) is
identical to that obtained in[1] for the case of initially undisturbed plates. The effects of the initial
stresses are entirely absorbed by the quantity k<°. It is noted that if the initial in-plane forces are
positive, then these would be a stiffening effect.

It was discussed in[1] that one of the roots of the determinantal cqn (18) is trivial. Thus, there
are five roots for c,” associated with five wave fronts. Also, in order that a transverse shear shock
can propagate, the following inequality must be satisfied:

[(W]* = 2(ks" )min (20)

where (ks )min is the minimum value of ks* for all possible propagation directions. This direction
can be obtained by setting the derivative of ks given by eqn (19) with respect to 8 (the angle
between the wave front normal and the x-axis) to zero. We obtain

tan 20min= 2(Nx_v +A45)/(Nx _N)- +Aqq_A44) (21)
The corresponding minimum value of k<* is
2(ks Ymin = Nx + Ny + Ass+ Aus—{(Nx = Ny + Ass— A)* + 4N,y + Aus)}'? (22)

The square root of this value is then the maximum value of the amplitude with which the shock
wave can propagate in any direction. In other words, the shock wave would cease to propagate in
the direction 8. if [W]> reaches the value equal t0 2(ks" )min.

4. SMALL. AMPLITUDE WAVES UNDER IN-PLANE DEFORMATIONS

This is a special case of the one discussed previously. If the amplitude of the shock front is
small, then we set

[w]l=0 (23)
in eqn (18) to obtain
A’fl—anp At B%, B, 0
A% A% —ca’P B%, B%, 0
B, B*%. Dti—c.’I Dt 0 =0 (24)
B?l B3%, Dfl D%, - C,.ZI 0
0 0 0 0 ks —c.’P
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It should be pointed out here that the velocity for the acceleration wave propagating under the
same conditions satisfies the same equation for the shock wave as given by eqn (24). In fact, for
acceleration waves with large amplitudes. the condition |b;| = 0 assumes the same expression of
eqn (24).

From eqn (24), it can be seen that there is only one wave front that is affected by the initial
in-plane forces. This wave front can be easily identified to be the transverse shear wave for which
the normal velocity is given by

Pe = ks 125)

Explicitly, eqn (25) can be expressed as
P('n: =7],‘(N,\- + N\- + A55+ A44)‘. +%(N_\- - N\- - Ass— A44)u CcOoS 20 +(Nn + A.ﬁ)‘, sin 20 ‘.Zh)

In view of eqn (26). we conclude that the wave front can propagate with a constant velocity
independent of direction if the initial deformation is set up in such a way that

N“-+A.Js:0. N\+A55=N\-+A44 (37)
5. EFFECT OF LARGE INITIAL DEFLECTION ON SMALL AMPLITUDE WAVES
If the amplitude of the wave front is small then we obtain from eqn (9)
6 = Yo {28)

Substituting eqn (28) together with [w] =0 in eqn (5) we obtain

‘\Tl“('n:P A%, * B*. I\"el |
A% Aﬂfz_('nzp B%, B%; k"
Bf, B*. DY -1 D% kS = (29)
% B% % D%, (_":I ks’
I\'I" ko ko ke ke + yo— &P

In eqn (29), the quantities {k"} and {y"} depend on {E,} and {N.} which have to be determined
from the given initial deformation of the laminated plate. In the following. we will consider the
simple initial deflection given by

w. (X, ¥) = dolX cos 0o+ ¥ sin 8) = dom 13

The state of deformation of the plate is not completely defined by eqn (30). since the other
displacement components and the initial static loadings still can vary.

Consider a state of deformation that is obtained by simply moving the edge of the plate along
1 = [ vertically. This results in a stretching effect. If the external transverse loads are vanishing.
then the transverse shear deformations can be eliminated, i.c.

AL LY 30
ax ay
Substituting eqn (30) in eqn (31). we obtain
Yoo = —docOs 8o, thy, = —dosin 6y (3

If. in addition, we require that

Uy = v, =0 3
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then the static equations of equilibrium of a laminated plate under large deflection can be satisfied
identically. The nonlinear equations of equilibrium can be found in[2). To realize the
boundary conditions for a plate of width | in the 7-direction proves to be easy. It can be shown
that the state of deformation given by eqns (30), (32) and (33) can be obtained by introducing
hinged edge conditions along = 0 and n = I, with externally applied edge moments given by

{M}=%d: (BHT:Hno) (34)

Rxo 0
{To}'_- 0 Ryu
flyo NAxo

trah={7}

with n.o = cos 8 and n,o = sin 8, together with an imposed displacement w = dol at ¢ = I For
symmetric laminates, {B} =0 and, thus, {M}=0.
Substitution of eqn (30) in eqn (13) yields

where

(35)

{NA=%¢HAHEM%L (362)

and

{Eu} = do{n(l} (36b)

respectively. Using eqns (36a) and (36b), we obtain from eqns (12) and (8)

o= do*({nf" (4 "Hnah 43 (0} (Y {AH Tk} @7)

and
"= do{?;—:i} i, (37b)

respectively. With v, and {k°} determined in terms of the given deflection, the eigen-value
problem given by eqn (29) can be solved as usual. The numerical solutions will be presented in a
later section.

6. CONSTRUCTION OF THE WAVE SURFACE
Assume that the wave front position is given by

fy)=t (38)
for a given time t. By defining
px.= 3flax, p, = 3f|ay (39)
we obtain from eqn (38)
d__dx  dy_
i P thg ! (40)

The quantities p. and p, are, in fact, components of the normal slowness vector.
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The normal vector to the wave front is given by
ay=pips + p AL ne = polps + p {41
From eqns (40) and (41), it is easy to show that
Co=Hipi+=pA's 142)
It is then obvious that
B = Cofhe By = Cufhs 43

Using the above relations, the determinantal equation Ja;] = 0 or |hi| = 0 can be expressed in
terms of p. and p,. The general equation for the normal velocily ¢. can be written as

gip.pi=H 144y

It is noted that eqn (44) represents five equations corresponding to the five values of ¢.. Thus. we
have five equations characterizing the five propagating wave fronts. In view of the relations given
by eqn (39), we may regard each equation g(p.. p,) = 0 corresponding to each value of ¢, as a first
order partial differential equation in f. The positions of the wave fronts can be obtained by solving
these nonlinear partial differential equations. Such solutions can be obtained by reducing the
partial differential equation to a family of initial value problems for a system of ordinary
differential equation by means of characteristics[3]. A similar problem was solved by Sun|4] for
the shock wave with small amplitudes. The general form of the solution can be expressed as

N1 ey Vg
ey i) dg

X ~Xo= (p\ 3,;': P ap‘ l”p_\-

iy d ' ag

¥ Vo= (_p.-mw\-;f—‘) ﬁt
where X, and ¥, indicate the initial position of the wave front at t = 0. The procedure for
constructing the wave surface is quite straightforward. First. we determine the normal vector
{n.. n,) for the initial wave front. Then. we substitute the values of n, and n. in the equation
la;] = 0 (or |b;| = 0) to obtain the corresponding normal velocity ¢, for the wave front. From egns
(43) and (44) we obtain the values of p.. p.. dg/ap. and dg/ap, which are then used to determine
the position of the wave front (x, y) at time 1.

As an illustrative example. we consider the shock wave {or acceleration wave) with small
amplitude propagating in a laminated plate under in-plane deformation. In this case. the
transverse shear wave is uncoupled from the other modes (see eqn 24)). und we have

2P p)=ap’ +ap” + 20pp. - P =0 {460
where
Gy = N\ - ,45(
(Y;':N, -+ A.u 471

cv‘==P¢u +/445
Substitution of eqn (46) in eqn (45) leads to
X = Xo={a,p. + o M

{48)
X =¥ =(ap. +a:pi it
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If the wave front is generated from a point source at the origin, then xo = yo = 0. In this case, we
can eliminate p. and p, from eqn (48) and (46) to obtain

xX’IB+ y*IB - 2Baxy = Pt? (49)
where
B =ai—aila:
Bz = ez~ as’la, (50)

B:= asf(a1a2~ ax’)

It is evident that eqn (49) represents an ellipse of which the major axis is inclined by an angle
¢ given by

tan 2¢ =2(13/(a|—a:) (51

A photoelastic study of stress waves in laminated composites was carried out by Dally et al.[5]. It
was found that the wave surface was in fact elliptical in shape. Some interesting discussions
concerning wave surfaces were presented in[4].

If in eqn (49) we set as = 0, then the major axis of the ellipse coincides with the x-axis. Also
eqn (49) reduces to

x*lai+ y*laa= Pt* (52)

It is obvious that if a, = a2, which is identical to eqn (27), then the wave surface forms a circle.
The reason is that under these conditions the wave front propagate with the same velocity in all
directions.

From eqn (47), it is noted that «; and a. can approach zero if N, and N, are negative, or, in
other words, compressive. Consider, for example, the case N, = Ny and N, = —N,. From eqn
(52), it is seen that the ellipse of the wave front would have a long major axis and very short minor
axis as the value of Ny increases. That is, the compression in the y-direction reduces the wave
propagation velocity in the respective direction. If No= A%,, then the wave front can not
propagate. This is also an indication that the under such compressive initial force, the plate may
not be initially stable.

7. NUMERICAL RESULTS
A typical graphite-epoxy composite has the following engineering constants:

E. =25%10°psi, Er =1%x10°psi, G.r =0-5x 10° psi
(53)
G’rr =0-2x ]06 pSi, VLT = 0'25, Vrr = 0:25

where L and T are the directions parallel and normal to the fibers, respectively; v.r is the
Poisson’s ratio measuring the lateral strain under uniaxial normal stress parallel to the fibers, and
vrr is the Poisson’s ratio defined in the same manner. The corresponding reduced stiffnesses are
given by

25-062 0-250 0
{Q;}=1 0-250 1-002 0 tx 10°psi (54a)
0 0 05

Qu=02%10°psi. Qss=0-5%10%psi, Qus=0 (54b)
The reduced stiffness coefficients for layers with fibers orienting in other directions can be

obtained by the usual coordinate transformation law.
In Figs. 1 and 2, the velocities of shock waves of large amplitudes propagating in initially
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Fig. 2. Normal velocities vs @ for shock waves in a (-90-90-0-laminate, []J/cr = 1.

stressed laminates are plotted versus the direction of propagation 8. The plates considered are
cross-ply laminates symmetrically stacked in order to reduce the bending and extension coupling.
Tt should be noted that there are two factors which can affect the shock velocity, namely the
amplitude of the shock, [w], and the initial in-plane force, (N, ).. It is clearly shown by the figures
that both the amplitude and the initial force have considerable effect on the transverse shear
shock wave. It is interesting to note that the effects of the amplitude and the initial force are
opposite, i.e., a larger amplitude reduces the transverse shear shock velocity while a larger initial
tensile force increases it.

The dependence of the shock velocity on the initial stress is shown in Fig. 3 for [w]/¢r = 1 and
# = 30° for 0 and 0-90-90-0 Jaminates. Again the extension and twisting shear modes appear to be
little affected by the presence of the initial stress, while there is substantial stiffening effect on the
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Fig. 3. Effect of the initial force N, on the normal velocities for 0-90-90-0- and 0-laminates at 8 = 30° and
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Fig. 4. Effect of N, on the shock velocity of the transverse shear mode for 0-90-90-0, 0-90-0,0-90, and 0-laminates
with[w] =0.

transverse shear mode. In Fig. 4, the influence of the in-plane force on the velocity of the
transverse shear shock is presented for various laminates at different directions. It should be
observed that the shock wave ceases to propagate at some critical compressive forces. The
critical value is direction dependent. If the wave surface forms an enclosed contour, then the
smallest value of N, in all directions should be considered as the maximum compressive force
the plate can sustain.

In Figs. 5-10, the numerical results corresponding to the initial deformation given by eqn (30)
as discussed in Section 5 are presented. In addition to the transverse shear mode, the other modes
are affected by the initial deflection appreciably. For the symmetric laminates, however, the
bending and twisting moments modes, which are not coupled with the other modes, agree with
the linear solutions (without initial deformations). It is found that the influence of the initial
deflection in fact is greater on the extension and twisting shear modes than on the transverse
shear mode. This fact is revealed in Figs. 9 and 10.
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Fig. 8. Normal velocities of the wave fronts vs # for an
initially defected 0.90-90-0lmninate with 8y~ 45" and
[w}=0.

Fig. 9. Bffect of the iniliat deflection onihe velocities of the
wave fronts fera0-laminalewith 8, = 45and # = M.

Fig. 10. Effect of the initial defliection oo the velocities of the

wavefronts for ad-90-laminate with & = 45°and & = 30°.
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